Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations
نویسندگان
چکیده
Nonlocal symmetries are obtained for Maxwell’s equations in three space–time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space–time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space–time dimensions. © 1997 American Institute of Physics. @S0022-2488~97!00706-8#
منابع مشابه
Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple
The use of the symbolic software package GeM for Maple is illustrated with examples of computation of nonlocal symmetries and nonlocal conservation laws of nonlinear partial differential equations. In the considered examples, the nonlocal symmetries and conservation laws arise as local symmetries and conservation laws of potential systems. FullMaple codewith detailed comments is presented. Exam...
متن کاملDerivation of conservation laws from nonlocal symmetries of differential equations
An identity is derived which yields a correspondence between symmetries and conservation laws for self-adjoint differential equations. This identity does not rely on use of a Lagrangian as needed to obtain conservation laws by Noether’s theorem. Moreover, unlike Noether’s theorem, which can only generate conservation laws from local symmetries, the derived identity generates conservation laws f...
متن کاملFramework for nonlocally related PDE systems and nonlocal symmetries: extension, simplification, and examples
Any PDE system can be effectively analyzed through consideration of its tree of nonlocally related systems. If a given PDE system has n local conservation laws, then each conservation law yields potential equations and a corresponding nonlocally related potential system. Moreover, from these n conservation laws, one can directly construct 2 − 1 independent nonlocally related systems by consider...
متن کاملFramework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples
Any partial differential equation PDE system can be effectively analyzed through consideration of its tree of nonlocally related systems. If a given PDE system has n local conservation laws, then each conservation law yields potential equations and a corresponding nonlocally related potential system. Moreover, from these n conservation laws, one can directly construct 2n−1 independent nonlocall...
متن کاملConservation Laws and Potential Systems of Diffusion-Convection Equations
In her famous paper [14] Emmy Noether proved that each Noether symmetry associated with a Lagrangian generates a conservation law. (Modern treatment of relationship between components of Noether conserved vector and Lie–Bäcklund operators which are Noether symmetries was adduced in [10,18]. Kara et al [12,13] constructed conservation laws of some classes of PDEs with two independent variables u...
متن کامل